freechips/semicustom/semicustom.ipynb
2023-05-03 06:25:24 +02:00

659 lines
17 KiB
Text

{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "uINjDJNf39eD"
},
"source": [
"# Semicustom digital design crashbook\n",
"\n",
"## Sources\n",
"\n",
"### RTL description (Verilog)\n",
"\n",
"The OpenROAD workflow takes the circuit's RTL description as an input. For instance, it can be a three bits XOR gate.\n",
"\n",
"\n",
"<blockquote><details>\n",
"\n",
"<summary>\n",
" \n",
"#### ↕️ Types in Verilog\n",
"\n",
"</summary>\n",
" \n",
"```verilog\n",
"// Three scalar nets\n",
"wire op_b, op_a, result;\n",
"// One 16-bit net\n",
"wire [15:0] word_bus;\n",
"// 1K-array of 8-bit nets\n",
"wire [7:0] byte_array [0:1023];\n",
"```\n",
" \n",
"</details></blockquote>\n",
"\n",
"<blockquote><details>\n",
"\n",
"<summary>\n",
" \n",
"#### ↕️ Assignation (non-blocking) in Verilog\n",
"\n",
"</summary>\n",
" \n",
"```verilog\n",
"// 16-bit, hexadecimal constant\n",
"assign address = 16'hCAFE;\n",
"// Unsized, decimal constant\n",
"assign counter = 'd42;\n",
"// 1-bit, binary constant\n",
"assign answer = 1'b1;\n",
"\n",
"// Ternary assignation\n",
"assign muxed = which ? source_1 : source_2;\n",
"\n",
"// Concatenation\n",
"assign padded_packet = {5'b00000,body,suffix};\n",
"// Replication\n",
"assign odd_mask = {10{2'b10}};\n",
"\n",
"// Indexing\n",
"assign one_bit = bus[4];\n",
"assign bits = bus[15:12];\n",
"```\n",
" \n",
"</details></blockquote>\n",
"\n",
"<blockquote><details>\n",
"\n",
"<summary>\n",
" \n",
"#### ↕️ Operators in Verilog\n",
"\n",
"</summary>\n",
" \n",
"```verilog\n",
"// Addition, substraction, negation\n",
"assign sum = op_a + op_b; assign sub = op_a + op_b; assign opp = -op_a\n",
"// Multiplication, division, modulo\n",
"assign prod = op_a * op_b; assign div = op_a / op_b; assign rem = op_a & op_b\n",
" \n",
"// Bitwise not, or, and, xor\n",
"assign n = ~m; assign a = b | c; assign d = e & f; assign x = y ^ z\n",
"\n",
"// Logical not, and, or\n",
"assign ans = !v; assign ans = v || w; assign ans = v && w;\n",
"// Logical equality, difference\n",
"assign ans = v == w; assign ans = v != w;\n",
"// Relations (strictly) greater, (strictly) lower than\n",
"assign sg = a > b; assign gt = a >= b; assign sl = a < b; assign lt = a <= b;\n",
" \n",
"// Left, right shift by n bits\n",
"assign l << n; assign r >> n;\n",
"// Left, right arithmetic shift by n bits\n",
"assign l <<< n; assign r >>> n;\n",
"```\n",
" \n",
"</details></blockquote>"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "gpgkIYB739Ii"
},
"outputs": [],
"source": [
"%%writefile v/xor3.v\n",
"module xor3(\n",
" input wire a,\n",
" input wire b,\n",
" input wire c,\n",
" output wire out\n",
");\n",
" assign out = a ^ b ^ c;\n",
"endmodule"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "hp8h5vH8TUXr"
},
"source": [
"### Configuration file (JSON)\n",
"\n",
"A configuration file should be provided. It describes constraints and strategies applied during synthesis and implementation of the circuit."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "rbT-vP0h0enK"
},
"outputs": [],
"source": [
"%%writefile build/config.json\n",
"{\n",
" \"DESIGN_NAME\": \"xor3\",\n",
" \"VERILOG_FILES\": \"dir::../v/xor3.v\",\n",
" \"CLOCK_TREE_SYNTH\": false,\n",
" \"CLOCK_PORT\": null,\n",
" \"FP_SIZING\": \"absolute\",\n",
" \"DIE_AREA\": \"0 0 35 45\",\n",
" \"FP_PDN_AUTO_ADJUST\": false,\n",
" \"FP_PDN_VOFFSET\": 0,\n",
" \"FP_PDN_HOFFSET\": 0,\n",
" \"DIODE_INSERTION_STRATEGY\": 3\n",
"}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Workflow\n",
"The provided `flow.tcl` is a script describing the OpenROAD workflow. A _GDS_ file will be generated using the RTL circuit description, the PDK and the configuration file."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "VP60fdObiP15",
"outputId": "41aa85e4-c663-4778-d448-928dbe474b11"
},
"outputs": [],
"source": [
"%env PDK=sky130A\n",
"!flow.tcl -design build"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "luguFgZ43AeL"
},
"source": [
"## Output products\n",
"\n",
"### Display layout\n",
"\n",
"The implemented layout can be retrieved as follows:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 650
},
"id": "WOnhdtp3ivRi",
"outputId": "b4bd26f8-d3da-47b7-e321-99272b0591ef",
"scrolled": false
},
"outputs": [],
"source": [
"import glob\n",
"import gdstk\n",
"import IPython.display\n",
"\n",
"gdsii = sorted(glob.glob(\"./build/runs/*/results/final/gds/*.gds\"))[-1]\n",
"top = gdstk.read_gds(gdsii).top_level()\n",
"top[0].write_svg('svg/inverter.svg')\n",
"IPython.display.SVG('svg/inverter.svg')"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "NW_7YdgTZYQK"
},
"source": [
"### Reporting\n",
"\n",
"Many reports are available under:\n",
"\n",
"```\n",
"freeechips/semicustom/runs/RUN_YYYY.MM.DD_HH.MM.SS/reports/.\n",
"```\n",
"\n",
"An overview of the main figures can be retrieved as well:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"id": "OWAwQI3fZC4W",
"outputId": "d50dcf9f-30cd-42a3-dab5-12992bc9dca2",
"scrolled": true
},
"outputs": [],
"source": [
"import glob\n",
"import pandas as pd\n",
"pd.options.display.max_rows = None\n",
"\n",
"pd.read_csv(sorted(glob.glob(\"./build/runs/*/reports/metrics.csv\"))[-1]).T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# To have fun going further...\n",
"\n",
"## Sequential circuits in Verilog\n",
"\n",
"The tutorial above focuses on combinational circuits. Sequential circuits can obviously be described in Verilog as well. Sequential blocks feature an `always` block. Refer to the vendor's reference to get the sensitivity list's syntax (e.g. to determine if reset is synchronous or asynchronous).\n",
"\n",
"<blockquote><details>\n",
"\n",
"<summary>\n",
" \n",
"#### ↕️ Sequential structures in Verilog\n",
"\n",
"</summary>\n",
"\n",
"Nets which store data are declared as `reg`s:\n",
" \n",
"```verilog\n",
"// Three scalar register\n",
"reg op_b, op_a, result;\n",
"// One 16-bit register\n",
"reg [15:0] word_bus;\n",
"// 1K-array of 8-bit registers\n",
"reg [7:0] byte_array [0:1023];\n",
"```\n",
"\n",
"The following structure updates the memory points:\n",
" \n",
"```verilog\n",
"always @(posedge clk or negedge rst) begin\n",
" if (!rst) begin \n",
" counter <= 0;\n",
" end else begin\n",
" counter <= counter + 1;\n",
" end\n",
"end\n",
"```\n",
" \n",
"</details></blockquote>\n",
"\n",
"Advanced structures like the `case` structure can be used to describe finite state machines. FSM decoders can be described in an abstract way using `always` blocks in a fully combinational way:\n",
"\n",
"<blockquote><details>\n",
"\n",
"<summary>\n",
" \n",
"#### ↕️ Advanced structures in Verilog\n",
"\n",
"</summary>\n",
"\n",
"```verilog\n",
" \n",
"/*\n",
" * Case structure\n",
" */\n",
" \n",
"case (state)\n",
"\n",
" 3'b000: idle_led <= 1'b1;\n",
" \n",
" 3'b001,\n",
" 3'b010: work_led <= 1'b1;\n",
" \n",
" 3'b011: begin\n",
" muxed <= spi_1;\n",
" work_led <= 1'b1;\n",
" end\n",
" \n",
" default: begin\n",
" muxed <= 0;\n",
" work_led <= 1'b0; \n",
" idle_led <= 1'b1;\n",
" end\n",
"\n",
"endcase\n",
"\n",
"/*\n",
" * Combinational always structure\n",
" * To describe priorities in a procedural fashion,\n",
" * use blocking `<=` assignations instead of\n",
" * non-blocking `=` assignations.\n",
" */\n",
" \n",
"always @( * ) begin\n",
" flag <= 1'b0;\n",
" if (error) begin \n",
" flag <= 1'b1;\n",
" end\n",
"end\n",
"```\n",
"\n",
"</details></blockquote>\n",
" \n",
"The counter example can be synthetized:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile v/cnt.v\n",
"module cnt(\n",
" input wire clk,\n",
" input wire rst,\n",
" output wire [7:0] count\n",
");\n",
"\n",
" reg [7:0] counter;\n",
" assign count = counter;\n",
"\n",
" always @(posedge clk or negedge rst) begin\n",
" if (!rst) begin \n",
" counter <= 0;\n",
" end else begin\n",
" counter <= counter + 1;\n",
" end\n",
" end\n",
"\n",
"endmodule"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For sequential circuits, one must specify to synthesize the clock tree as well:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile build/config.json\n",
"{\n",
" \"DESIGN_NAME\": \"cnt\",\n",
" \"VERILOG_FILES\": \"dir::../v/cnt.v\",\n",
" \"CLOCK_TREE_SYNTH\": true,\n",
" \"CLOCK_PORT\": \"clk\",\n",
" \"FP_SIZING\": \"absolute\",\n",
" \"DIE_AREA\": \"0 0 40 50\",\n",
" \"FP_PDN_AUTO_ADJUST\": false,\n",
" \"FP_PDN_VOFFSET\": 0,\n",
" \"FP_PDN_HOFFSET\": 0,\n",
" \"DIODE_INSERTION_STRATEGY\": 3\n",
"}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The flow can be started:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"%env PDK=sky130A\n",
"!flow.tcl -design build"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The cell above can be reused to display the lyaout."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## High-Level Synthesis (HLS)\n",
"\n",
"RTL description of circuits does not follow an imperative programming paradigm. It is a description language that produces highly parallelized designs.\n",
"\n",
"High-Level Synthesis provides an imperative language and a compiler that synthesizes the imperative instructions into RTL. For instance, _XLS_ provides a _Rust_-like language:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile xls/x/find_max.x\n",
"\n",
"//\n",
"// Input: an array of 32-bit unsigned integers (u32) of parametrized length N\n",
"// Output: the largest element of the array\n",
"//\n",
"pub fn find_max<N: u32>(array: u32[N]) -> u32 {\n",
" let max: u32 = u32:0;\n",
" for (i, max): (u32, u32) in range(u32:0,N) {\n",
" if (array[i] > max) {array[i]} else {max}\n",
" }(max)\n",
"}\n",
"\n",
"//\n",
"// Input: an array of 32-bit unsigned integers (u32) of parametrized length 4\n",
"// Output: the largest element of the array\n",
"//\n",
"pub fn find_max_impl(array: u32[4]) -> u32 {\n",
" find_max<u32:4>(array)\n",
"}\n",
" \n",
"#[test]\n",
"fn find_max_impl_test() {\n",
" let _= assert_eq(find_max_impl(u32[4]:[45,3,15,6]), u32:45);\n",
" let _= assert_eq(find_max_impl(u32[4]:[3,45,15,6]), u32:45);\n",
" let _= assert_eq(find_max_impl(u32[4]:[15,3,45,6]), u32:45);\n",
" let _= assert_eq(find_max_impl(u32[4]:[6,3,15,45]), u32:45);\n",
"}\n",
"\n",
"#[test]\n",
"fn find_max_test() {\n",
" let _= assert_eq(find_max<u32:1>(u32[1]:[39]), u32:39);\n",
" let _= assert_eq(find_max<u32:2>(u32[2]:[4,90]), u32:90);\n",
" let _= assert_eq(find_max<u32:3>(u32[3]:[7,21,15]), u32:21);\n",
" let _= assert_eq(find_max<u32:8>(u32[8]:[1,3,45,1,5,56,0,34]), u32:56);\n",
"}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Testing, parsing and linting can be performed prior to RTL synhesis:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"!interpreter_main xls/x/find_max.x"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now that the imperative instructions are tested, the RTL design can be synthesized by _XLS_:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"XLS_DESIGN_NAME = 'find_max_impl'\n",
"XLS_DESIGN_FILE = 'find_max'\n",
"!ir_converter_main --top={XLS_DESIGN_NAME} xls/x/{XLS_DESIGN_FILE}.x > xls/ir/{XLS_DESIGN_FILE}.ir\n",
"!opt_main xls/ir/{XLS_DESIGN_FILE}.ir > xls/ir/{XLS_DESIGN_FILE}_opt.ir\n",
"!codegen_main --generator=combinational xls/ir/{XLS_DESIGN_FILE}_opt.ir > v/{XLS_DESIGN_FILE}.v\n",
"!cat v/{XLS_DESIGN_FILE}.v"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Verilog simulation\n",
"\n",
"A test bench can be written to simulate the `xor3` circuit described above:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%writefile tb/xor3_tb.v\n",
"module xor3_tb;\n",
"\n",
" wire value;\n",
" reg w1, w2, w3;\n",
" initial begin\n",
" $dumpfile(\"tb/xor3_tb.vcd\");\n",
" $dumpvars(0,xor3_tb);\n",
" # 0 w1 = 0; w2 = 0; w3 = 0;\n",
" # 5 w1 = 0; w2 = 0; w3 = 1;\n",
" # 5 w1 = 0; w2 = 1; w3 = 0;\n",
" # 5 w1 = 0; w2 = 1; w3 = 1;\n",
" # 5 w1 = 1; w2 = 0; w3 = 0;\n",
" # 5 w1 = 1; w2 = 0; w3 = 1;\n",
" # 5 w1 = 1; w2 = 1; w3 = 0;\n",
" # 5 w1 = 1; w2 = 1; w3 = 1;\n",
" # 5 $finish;\n",
" end\n",
"\n",
" xor3 xor3_i (w1, w2, w3, value);\n",
"\n",
" initial\n",
" $monitor(\"At time %t, value = %h (%0d)\",\n",
" $time, value, value);\n",
"endmodule"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The simulation can then be performed using _Icarus Verilog_:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"!iverilog -o tb/xor3_tb tb/xor3_tb.v v/xor3.v\n",
"!vvp tb/xor3_tb"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The waveforms are dumped in a `.vcd` file, located under:\n",
"\n",
"```\n",
"tb/xor3_tb.vcd\n",
"```\n",
"\n",
"It can be opened with https://vc.drom.io/ for instance."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Some ideas...\n",
"\n",
"Here are a couple ideas to spend a good time exploring those beautiful pieces of software:\n",
"\n",
" * Play with RTL2GDS configuration parameters and observe the impact on the layout.\n",
" * Simulate the `cnt` sequential circuit.\n",
" * Simulate the `find_max_impl` circuit synthesized using HLS.\n",
" * Try to make _Klayout_ GUI work (no warranty).\n",
"\n",
" **Do not start from scratch! Use the provided examples, examples you can find on the internet and the documentation to adapt from them!**\n",
" \n",
" > Good luck and read the docs. 😉\n",
" \n",
"## More food for the brain\n",
"\n",
" * GDS2RTL flow configuration parameters: https://armleo-openlane.readthedocs.io/en/latest/docs/source/configuration.html\n",
" * DSLX language reference: https://google.github.io/xls/dslx_reference/"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# References\n",
"Inspired from:\n",
"“Silicon Notebooks.” CHIPS Alliance, Apr. 08, 2023. Accessed: Apr. 10, 2023. [Online]. Available: https://github.com/chipsalliance/silicon-notebooks/blob/b65134a43b01ae31423f7ee87110740b2257ac42/digital-inverter-openlane.ipynb (Apache License 2.0)"
]
}
],
"metadata": {
"colab": {
"name": "digital-inverter-openlane.ipynb",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.16"
}
},
"nbformat": 4,
"nbformat_minor": 1
}